
LARGE SCALE HIERARCHICAL K-MEANS BASED

IMAGE RETRIEVAL WITH MAPREDUCE

THESIS

William E. Murphy, Second Lieutenant, USAF

AFIT-ENG-14-M-56

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-14-M-56

LARGE SCALE HIERARCHICAL K-MEANS BASED

IMAGE RETRIEVAL WITH MAPREDUCE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

William E. Murphy, B.S.

Second Lieutenant, USAF

March 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-14-M-56

LARGE SCALE HIERARCHICAL K-MEANS BASED

IMAGE RETRIEVAL WITH MAPREDUCE

William E. Murphy, B.S.
Second Lieutenant, USAF

Approved:

/signed/

Maj Kennard R. Laviers, PhD (Chairman)

/signed/

Maj Brian G Woolley, PhD (Member)

/signed/

Douglas D. Hodson, PhD (Member)

4 March 2014

Date

3 March 2014

Date

6 March 2014

Date

AFIT-ENG-14-M-56
Abstract

Image retrieval remains one of the most heavily researched areas in Computer Vision.

Image retrieval methods have been used in autonomous vehicle localization research, object

recognition applications, and commercially in projects such as Google Glass. Current

methods for image retrieval become problematic when implemented on image datasets that

can easily reach billions of images.

In order to process these growing datasets, we distribute the necessary computation for

image retrieval among a cluster of machines using Apache Hadoop. While there are many

techniques for image retrieval, we focus on systems that use Hierarchical K-Means Trees.

Successful image retrieval systems based on Hierarchical K-Means Trees have been built

using the tree as a Visual Vocabulary to build an Inverted File Index and implementing

a Bag of Words retrieval approach, or by building the tree as a Full Representation of

every image in the database and implementing a K-Nearest Neighbor voting scheme for

retrieval. Both approaches involve different levels of approximation, and each has strengths

and weaknesses that must be weighed in accordance with the needs of the application.

Both approaches are implemented with MapReduce, for the first time, and compared in

terms of image retrieval precision, index creation run-time, and image retrieval throughput.

Experiments that include up to 2 million images running on 20 virtual machines are shown.

iv

Table of Contents

Page

Abstract . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

List of Abbreviations . x

I. Introduction . 1

1.1 Overview . 2
1.1.1 Feature Extraction . 2
1.1.2 Database Index Creation . 4

1.1.2.1 Full Representation . 4
1.1.2.2 Bag of Words . 5

1.1.3 Image Comparison . 5
1.1.3.1 Image Comparison for FR Index 6
1.1.3.2 Image Comparison for BoW Index 7

1.1.4 MapReduce . 7
1.2 Research Goals and Objectives . 8
1.3 Software System Design . 9
1.4 Assumptions . 10
1.5 Risks . 10
1.6 Thesis Outline . 10

II. Background and Related Work . 12

2.1 MapReduce and Hadoop . 12
2.1.1 Hadoop and HDFS . 13

2.1.1.1 HDFS . 13
2.1.1.2 HDFS Data Representation 14
2.1.1.3 Hadoop Engine . 15

2.1.2 MapReduce Programming Model 16
2.1.3 Program Execution . 17

2.2 Image Retrieval . 18
2.2.1 Feature Extraction Background 18

v

Page

2.2.1.1 Feature Detector Overview 20
2.2.1.2 Feature Descriptor Overview 22

2.2.2 Hierarchical K-Means Algorithm 23
2.2.3 Bag of Words Retrieval Background 24
2.2.4 Full Representation Retrieval Background 27

2.3 Previous Large-Scale and MapReduce Image Retrieval Systems 29

III. Design and Implementation . 31

3.1 Test Environment . 31
3.1.1 Cluster Hardware . 31
3.1.2 Cluster Software . 32
3.1.3 Datasets . 32

3.2 Implementation . 34
3.2.1 HDFS Data Representation . 35
3.2.2 Feature Extraction in MapReduce 35
3.2.3 Index Creation in MapReduce . 36
3.2.4 Scoring and Retrieval in MapReduce 43

3.3 Experimental Methodology . 49

IV. Results and Analysis . 54

4.1 Index Storage Scalability . 55
4.2 Index Creation Time . 58
4.3 Retrieval and Comparison Throughput . 63
4.4 Retrieval Performance . 65

V. Future Work and Conclusion . 68

5.1 Contributions . 69
5.2 Extensions . 70
5.3 Conclusion . 71

Bibliography . 72

vi

List of Figures

Figure Page

1.1 Side-by-Side display of an image from the Caltech Buildings Dataset, before

and after MSER feature detection. 3

1.2 Visualization of HKM clustering process [36]. Here the branch is three, and

K-Means has been performed on 4 levels. Note that the resultant children are

only shown for one node at each level. 6

1.3 MapReduce Image Retrieval System Design 9

2.1 Data Flow for MapReduce Application [16] 17

2.2 Illustration of a generic tree with branch factor=3, depth=2, and nodes numbered. 24

3.1 Caltech Buildings Dataset Sample . 33

3.2 UK Benchmark [36] Dataset Sample . 34

3.3 MapReduce Feature Extraction Algorithm . 36

3.4 MapReduce K-Means Algorithm Map Function 37

3.5 MapReduce K-Means Algorithm Combine Function 38

3.6 MapReduce K-Means Algorithm Reduce Function 39

3.7 Full Process for MapReduce Hierarchical K-Means Algorithm 40

3.8 Reduce Function for Building FR HKM Index 41

3.9 MapReduce Map Function for Creating Inverted File 42

3.10 MapReduce Reduce Function for Creating Inverted File 43

3.11 Processing Query Images for FR Image Retrieval 44

3.12 Map Function for FR Query/Database Image Comparison 45

3.13 Reduce Function for FR Query/Database Image Comparison 46

3.14 Map Function for BoW Query/Database Image Comparison 48

3.15 Reduce Function for BoW Query/Database Image Comparison 49

vii

Figure Page

4.1 Inverted File Index Storage Scaling . 56

4.2 FR HMKM Index Storage Scaling . 58

4.3 Inverted File Creation Time Scaling . 60

4.4 FR HKM Index Creation Time Scaling . 62

4.5 Weakly Scaled Throughput for FR and BoW Retrieval 65

4.6 Retrieval Performance for BoW System on Caltech Buildings and UK

Benchmark Datasets at Multiple Precision Levels 66

4.7 Retrieval Performance for FR System on Caltech Buildings and UK Bench-

mark Datasets at Multiple Precision Levels 67

viii

List of Tables

Table Page

3.1 Database Index Storage Scalability Tests: In each scenario, database index size

is recorded. 51

3.2 Index Creation Time: Weak Scalability . 52

3.3 Retrieval Throughput: Weak Scalability . 53

4.1 Raw Database Image Size . 54

4.2 Total Approximate Feature Count and Feature Storage 55

4.3 Total Index Storage Size . 55

4.4 Inverted File Statistical Storage Scalability . 57

4.5 FR HKM Statistical Storage Scalability . 59

4.6 Inverted File Creation Times . 59

4.7 Inverted File Creation Times with 95% Confidence 61

4.8 FR HKM Index Creation Times . 61

4.9 FR HKM Creation Times with 95% Confidence 62

4.10 BoW and FR Throughput Results . 64

4.11 FR and Bow Throughput with 95% Confidence 64

ix

List of Abbreviations

Abbreviation Page

UAV Unmanned Aerial Vehicles . 1

MSER Maximally Stable Extremal Region . 4

SIFT Scale Invariant Feature Transform . 4

FR Full Representation . 4

BoW Bag of Words . 4

HKM Hierarchical K-Means Clustering . 5

HDFS Hadoop Distributed File System . 13

GFS Google File System . 13

JVM Java Virtual Machine . 15

SUSAN Smallest Univalue Segment Assimilating Nucleus 20

MSER Maximally Stable Extremal Region . 21

SURF Speeded-Up Robust Feature . 22

HOG Histogram of Oriented Gradient . 22

SIFT Scale Invariant Feature Transform . 22

tf-idf Term-Frequency Inverse Document Frequency 25

AKM Approximate K-Means . 25

FLANN Fast Library for Approximate Nearest Neighbors 28

x

LARGE SCALE HIERARCHICAL K-MEANS BASED

IMAGE RETRIEVAL WITH MAPREDUCE

I. Introduction

In Afghanistan alone, US Military Intelligence is collecting over 53 TB of data per

day [11]. Much of this data is video from UAVs, satellite imagery, and image data from

other sources. According to General Robert Kehler, commander of United States Strategic

Command (USSTRATCOM) [11], “There is a gap between our growing ability to collect

data and our limited ability to process that data, we are collecting 1,500 percent more

data than we did five years ago. At the same time, our head count has barely risen.” By

developing a scalable MapReduce image retrieval system, we take a step towards closing

the gap between the ability to collect data and the ability to process it.

Image retrieval can be described as selecting an image from a database of images,

that is most similar to a particular query. Current smart phone applications use image

retrieval techniques to enable a person to snap a picture of a scene or an object, and search

a database in order to get information on that scene or object. The scenes and objects

that can be recognized are limited by the scenes and objects that have been indexed in the

database collection of images. As the number of objects and scenes recognizable by these

applications are increased, so is the number of images that need to be placed in the database

collection of images. Image retrieval techniques have also been used to recognize objects

and scenes in video, by treating the video frames as images.

It is clear that database collections of images will continue to grow, and the techniques

used to index and search these collections need to adapt to the growing size. The primary

challenges posed by these expanding database image collections that necessitate a change

1

in current image retrieval techniques are: recognition performance, storage, scalability, and

computational cost.

MapReduce [16] is a computing framework created by Googler that allows for large

scale parallelization and data distribution across a cluster of machines. MapReduce directly

addresses the problems of storage and computational cost by distributing storage and

computation across many machines. With less pressure to make approximations to improve

storage and computational cost, techniques with better recognition performance can be

used. MapReduce has been used for parallelizing large scale image retrieval from databases

with up to 100 million images [4, 32]. This thesis investigation extends that research by

integrating additional retrieval techniques.

1.1 Overview

Most successful image retrieval techniques can be decomposed into three principal

steps: feature extraction, database index creation, and image comparisons. These three

steps are necessarily sequential. First, features are extracted from all database images.

These extracted features are then used to create an index of the database images. This

index is then used to efficiently compare a particular query image to the database images.

Each of these steps can be performed in various ways, and the manner in which these steps

are performed dictates the image retrieval method being used. Each of these steps are

discussed briefly in the following sections. Finally, the techniques used to implement them

in a MapReduce framework is explained.

1.1.1 Feature Extraction.

Feature extraction is an integral part in efficiently comparing images. When choosing

how to extract image features, feature detection and description are two tasks that must

be performed. As the names suggest, a feature detection algorithm detects features in an

image, and a feature descriptor algorithm characterizes the detected feature, typically as

2

a vector of doubles. Techniques for performing each of these tasks are discussed in more

detail in later sections.

An image feature, in this context, can be defined as a section of an image which

displays different image properties than the areas immediately surrounding it. Depending

on the type of feature detector being used, this section can be a single pixel, an edge, or

any type of region. The image properties typically considered when searching for features

include, but are not limited to, intensity, color, and texture.

The most important property of an image feature is repeatability [44]. When presented

two different images of the same object, a repeatable feature extractor will yield a large

number of the same features detected on the object from both images. It is important

that features are detected consistently, even when an image has been blurred, re-oriented,

rescaled, or transformed in any other manner. Repeatability is obtained in feature extraction

algorithms using two different techniques: invariance and robustness. These techniques,

and how they provide for reliability, is further discussed in Chapter II.

(a) Sample Image from Caltech Buildings

Dataset

(b) MSER Features Approximated with El-

lipses

Figure 1.1: Side-by-Side display of an image from the Caltech Buildings Dataset, before

and after MSER feature detection.

3

For this research we use the Maximally Stable Extremal Region (MSER) [28] feature

detection algorithm. MSERs are shown to be optimal [31, 19] for object detection. A

MSER can be described as a connected area in an image that has an intensity that is either

higher or lower than all of the pixels immediately surrounding it. The necessary difference

in the intensity inside and outside the MSER, or the threshold, is a parameter set in the

detection algorithm. This parameter is set such that there is an average of 300 features

detected per image.

The Scale Invariant Feature Transform (SIFT) [27] feature description algorithm was

used to describe the detected MSER features. An ellipse approximates the MSER region

as shown in Figures 1.1b and 1.1a, and the SIFT descriptor characterizes the region into a

128-dimensional vector. SIFT provides for reliability by being invariant to image scale and

rotation. SIFT also achieves reliability through robustness, by being desensitized across

a large range of distortion, 3D viewpoint, noise, and illumination. SIFT descriptors were

developed for the purpose of image matching. They were designed to be highly distinctive

allowing for a single feature to be matched with another feature from a large database.

SIFT features have been shown to be the most effective descriptors [30] for image matching

and are used in most image retrieval and image matching problems relevant to this work

[6, 36, 4, 2, 12, 32].

1.1.2 Database Index Creation.

Indexing the database image collection consists of organizing the features extracted

from the database images in a manner to facilitate fast queries. There are two main

approaches to database index creation: Full Representation (FR) and Bag of Words (BoW)

[12]. Each of these approaches are outlined in the following sections.

1.1.2.1 Full Representation.

When using FR, all features extracted from the database images are explicitly stored

in a data structure that can be efficiently searched. The data structure storing the database

4

image features serves as the database index. For this work, we use Hierarchical K-

Means Clustering (HKM) [34] to build a tree which consists of database image features

composing the leaf nodes, and cluster centers composing the internal nodes. In order to

build the HKM tree, the K-Means clustering algorithm is performed at each level of the

tree until a prescribed maximum depth is reached. In a study of the most widely used FR

image retrieval techniques, HKM was shown to yield the fastest retrieval times as well

as recognition performance within ten percent of the top performer for all datasets tested

[5]. This reason along with HKM’s apparent suitability to MapReduce programming is the

motivation to use HKM for building the FR index.

1.1.2.2 Bag of Words.

When using the BoW approach, all features extracted from the database image

collections are quantized into pre-determined bins, and occurrence count is stored in lieu

of the database features being stored explicitly. In order to build an index using a BoW

method, we first construct a visual vocabulary from a set of training data. In this research

we use HKM to build this a hierarchical vocabulary tree as introduced by Nister and

Stewenius [36]. All extracted database features are then classified into one of the leaf

nodes in the vocabulary tree, and feature occurrences per image at every leaf node are

stored in inverted files [35]. HKM vocabulary trees represent the state of the art among

BoW image retrieval methods in terms of speed, and are among the top performers in

terms of recognition performance [3, 36].

1.1.3 Image Comparison.

Extracting features from the database images and building image database index are

both off-line, or preprocessing, steps. The final step of image retrieval, and the actual

on-line task, is to match a presented query image to a particular image in the database.

Finding this particular database image involves comparing the query image to all images in

the database, and subsequently returning the best match. The method used to make these

5

Figure 1.2: Visualization of HKM clustering process [36]. Here the branch is three, and

K-Means has been performed on 4 levels. Note that the resultant children are only shown

for one node at each level.

comparisons depends largely upon the type of database index that has been created. Aside

from the index type, the first step is to detect and extract features from the query image.

This is done using the same methods discussed regarding database images. The techniques

used to compare a query image to the database images for both FR and BoW indexes are

described briefly in the following sections.

1.1.3.1 Image Comparison for FR Index.

We use a K-Nearest Neighbor voting scheme [34], in order to retrieve the

corresponding database image when presented a query image. In short, we find the k

6

database features closest in feature space to each query feature. Each database feature

“votes” for the database image that it came from, and whichever image gets the most votes

is declared the best match. This voting scheme is further explained in Chapter II. With an

FR index, a nearest neighbor voting scheme is the standard method [2, 4, 5, 32].

1.1.3.2 Image Comparison for BoW Index.

Comparison for databases indexed using a BoW approach is more complex. In this

case we use the scheme presented by Nister and Stewenius [36]. This scheme was shown

to be superior when compared to other comparison approaches by Aly [3]. Each feature

extracted from the query image is classified into one of the leaf nodes in the vocabulary

tree. After this point an equation is used to assign an objective score to each database

image explained in Chapter II.

1.1.4 MapReduce.

MapReduce [16] was created by Google for the purpose of parallelizing computation

and distributing data across a large cluster of machines. When dealing with traditional

parallelization, most of the code is written to deal with issues such as parallelizing

computation, distributing data, handling potential node failures, and load balancing.

MapReduce abstracts these issues and allows the programmer to focus on the actual task at

hand. This is done by constraining the programmer to “map” and “reduce” functions.

MapReduce is a good solution for parallelizing data intensive problems. These

types of problems involve processing and generating large datasets. Many data intensive

problems are termed as “embarrassingly parallel”, meaning that there is very little data

dependency in the input data. Many parts of the image retrieval process are “embarrassingly

parallel.”

MapReduce was embraced for large scale applications by companies such as Yahoo!r,

Facebookr, IBMr and Googler. At Googler alone, more than 100,000 MapReduce jobs

7

process more than 20 PB of data daily [16]. MapReduce is also a common way to leverage

the potential of cloud computing [22].

The data processes and programming constraints set by MapReduce are important to

consider because they dictate the way algorithms can be written, and the way data structures

can be used. This becomes apparent when methodology and implementation are discussed

in Chapter III.

1.2 Research Goals and Objectives

The goal of this research is to build two linearly scalable image retrieval systems. The

techniques used to accomplish this goal are:

1. Create and implement MapReduce Hierarchical K-Means BoW and FR indexing

algorithms

2. Develop MapReduce Query Image Comparison algorithms for BoW and FR Indexes

3. Analyze the scalability of each step in the image retrieval system.

Full testing and analysis is performed for these objectives to validate that the goal has

been achieved. In order to test the linear scalability of the system, we examine the linear

scalability of three component tasks in the system:

1. Index Storage Size

2. Index Creation Time

3. Query Image Throughput

We call the system linearly scalable if each of the tasks is linearly scalable. This

methodology is explained in Chapter III.

8

1.3 Software System Design

When developing a software system, a top down approach is often used. In a top down

design approach the developer establishes high level system requirements, and breaks the

problem down into a series of ambiguous subsystems that contribute to fulfill overall system

requirements. These subsystems are then refined to the point where the data structures

and necessary operations are determined so that algorithms can be designed. Finally, the

designed algorithms are implemented. The entire system design is shown in Figure 1.3.

Figure 1.3: MapReduce Image Retrieval System Design

9

1.4 Assumptions

Image retrieval is a subcategory in the computer science field of computer vision. It is

important that the reader uses this knowledge as context e.g. a feature in computer vision

literature is not the same as a feature in artificial intelligence literature. Also, in order to

reduce the scope of this work, it is assumed that the reader has a general knowledge of:

1. Calculus

2. Linear Algebra

3. Trigonometry and Geometry

4. Algorithms

5. Programming

Calculus, trigonometry, and geometry are fundamental prerequisites to understand

feature detection and description. Basic linear algebra is used throughout this document

to compare image features. Finally, a basic understanding of algorithms and programming

is needed to understand the implementations described in Chapter III.

1.5 Risks

Implementing a virtualized MapReduce cluster on a single server is the most

significant risk to this research. Limited resources and delayed recognition of this particular

requirement left this as the only option. Another risk is the number of third party software

packages being used. There are numerous potential problems associated with integrating

the functionality of multiple software packages.

1.6 Thesis Outline

In Chapter II, background information related to image retrieval and large scale

computation with MapReduce is discussed. Subjects forming the building blocks of this

10

research are discussed in detail, most importantly Aly’s large scale Fully Represented

image retrieval techniques [4], Nister and Stewenius’s [36] vocabulary tree approach,

and Dean and Ghemawat’s introduction of MapReduce [16]. Past research along with

new techniques presented in this document serve as the foundation for the design and

implementation detailed in Chapter III. The implementation is tested and results are

presented for tests over multiple database sizes are analyzed in Chapter IV. Finally, the

work is concluded, and possible extensions to this research are suggested in Chapter V.

11

II. Background and Related Work

To understand the discussion of a large scale image retrieval system built with

MapReduce, the reader must have knowledge of: fundamental image retrieval and

MapReduce. These two concepts are used in this research to produce an image retrieval

system powerful enough to accept very large database image collections. A full explanation

of MapReduce and it’s open source implementation, Hadoop [47], is given in Section 2.1.

A background on image retrieval techniques and their underlying concepts is presented in

Section 2.2. Finally Section 2.3 presents prior MapReduce image retrieval systems. While

some of these topics are briefly discussed in the previous chapter, more comprehensive and

technical explanations are given here.

2.1 MapReduce and Hadoop

When attempting to process enormous amounts of data in parallel, even the most

simple tasks require large amounts of complex code. This is due to the inherent difficulties

of writing parallelized code. When dealing with traditional parallelization, most of the

code is written to deal with issues such as parallelizing computation, distributing data,

potential node failures, and load balancing. MapReduce abstracts these issues and allows

the programmer to focus on the actual task at hand. This is done by constraining the

programmer to ”map” and ”reduce” functions. There is also an optional ”combine”

function provided for optimization.

MapReduce is software that runs on each machine in a cluster of machines,

accompanied by a programming model. By following the MapReduce programming

model, the programmer specifies to the software how the job should proceed, and the

software directs the job execution until completion.

12

Programs written using the MapReduce programming model are automatically

parallelized on the cluster of machines they are set to run on. The MapReduce runtime

handles input data partitioning, program execution scheduling, machine failures, and inter-

machine communication. MapReduce clusters can be scaled to thousands of machines

allowing very large datasets, without requiring the programmer to change their code. The

details of the MapReduce programming model and software are explained in the sections

below.

2.1.1 Hadoop and HDFS.

Hadoop [47] is an open source implementation of MapReduce along with the Hadoop

Distributed File System (HDFS) [9]. This is the implementation of MapReduce used in this

research. In this document the terms Hadoop and MapReduce are used interchangeably.

2.1.1.1 HDFS.

HDFS is a distributed file system, based on the Google File System (GFS) [20], that

provides centralized access to all files stored on the Hadoop cluster. HDFS is implemented

at the user level with Java. This means that when deploying HDFS on a cluster, no changes

need to be made to the native kernel implemented file system currently running on each

machine in the cluster. HDFS runs on top of the native kernel based file systems on each

node, and utilizes them to store data. It is not necessary to run the same type of local file

system on each node [39], making HDFS extremely portable. Data stored on HDFS is

broken into blocks, 64 MB by default, and each block is stored as a separate file on HDFS.

These files are then each replicated to two separate nodes in order to protect from node

failures.

Two types of Java services compose HDFS, namely the DataNode and the NameNode.

The DataNode service runs on all nodes in the Hadoop cluster. The DataNode serves as the

interface between the NameNode and the kernel implemented file system on each machine.

13

The DataNode performs basic operations on the data being stored on the local machine

which it is running with the direction of the NameNode.

The NameNode service runs only on the ”master” node of the Hadoop cluster. This

centralized service is responsible for storing a directory of the data on the Hadoop cluster.

This directory contains a list of all of the files on HDFS, and all of their locations and it is

stored in memory. In order to perform basic data operations such as open, delete, or rename

on HDFS, a client is directed to the NameNode. The NameNode responds to the client with

the locations of the data, and the client interacts with the DataNode on the nodes specified

by the NameNode.

2.1.1.2 HDFS Data Representation.

Data representation is an important consideration when processing large amounts of

data using Hadoop. The problem is especially important when dealing with a large number

of relatively small files [18]. The first issue with having a large number of small files on

HDFS, is that the NameNode has memory limitations. Recall that the NameNode stores a

directory of all files, and their locations in memory. The second issue with having a large

number of small files, is that the total time to process them in batch is dominated by disk

seeks. These issues are solved by combining these small files into larger types of files that

follow the input/output data formats discussed below.

There are two principal input and output data formats that are supported by

MapReduce. The simpler of the two formats is a text representation. In text mode, each

line of the input is treated as a key-value pair. By default the key is the byte offset of

each line, and the value is the actual contents of the line [47]. This is not very useful for

many applications since it provides no flexibility in the potential key values. The key-value

pair, in the text mode can also be separated by a user defined field delimiting character.

This solves the problem of inflexible keys, however when the raw data is encoded into

a value, the field and line delimiting characters must be avoided. The other commonly

14

used input type are SequenceFiles. This is the file format for all temporary outputs of map

functions used within Hadoop. A SequenceFile is a flat file composed of key-value pairs,

stored in binary. Hadoop provides tools for writing, reading, sorting, and compressing

SequenceFiles. The SequenceFile format allows many images to be stored in their original

binary form, to be stored in a single file. This is the way image data is represented when

placed on HDFS in this research.

2.1.1.3 Hadoop Engine.

We refer to the software responsible for managing a job’s execution the MapReduce

Engine [39]. Like HDFS, there are two Java services that compose the MapReduce Engine:

the JobTracker and the TaskTracker.

The JobTracker is a centralized service that runs on the “master” node of the cluster.

The JobTracker service is the supervisor for the execution of a MapReduce job. This service

is responsible for splitting the input data into blocks, scheduling independent map and

reduce tasks on nodes where the data to be processed resides, scheduling backup tasks, and

re-scheduling tasks in the event of node failure. Executing a map task on a node that the

data to be processed in that map task resides provides data locality, reduces network traffic,

and saves time. Scheduling backup tasks prevents “straggler” tasks from dominating the

total execution time of the job. Backup tasks are only scheduled towards the end of a

MapReduce job, and they have been shown to significantly reduce the time to complete

large operations[16].

The TaskTracker service runs on every computer in the cluster, and is responsible for

running the map and reduce tasks. The JobTracker assigns tasks to the TaskTrackers when

the job is submitted. When a task is assigned, the TaskTracker creates a new instance

of a Java Virtual Machine (JVM) to execute it, once a task is complete the TaskTracker

deletes the JVM instance. Through the program execution, the TaskTrackers contacts the

JobTracker to report task completions, and request new tasks.

15

2.1.2 MapReduce Programming Model.

Input in MapReduce programs are expressed as key-value pairs, and yield output is

also expressed as key-value pairs. The majority of the processing is typically done in the

Map function. The Map function takes the input key-value pairs, performs the processing

written by the programmer, and yields an intermediate key-value pair. MapReduce then

groups all intermediate key-value pairs with the same key, and sends them to the same

reducer. The input to the Reduce function is an intermediate key, and an iterator of values

associated with that key. The Reduce function typically merges the values, in a manner

specified by the programmer, to produce the program’s output.

As mentioned earlier, there is an option for the programmer to specify a Combine

function to decrease the amount of data passed between mapper and reducer. If a Combine

function is specified, the intermediate key-value pairs (mapper output) are merged, as

specified in the Combine function, prior to being dispersed to the reducer. This can

significantly reduce the amount of network traffic. The Combine function is not well

documented within Hadoop, and it is not guaranteed that the Hadoop program execution

will apply the combiner. With these problems in mind, Lin [25] implemented an in-mapper

combiner design pattern. The in-mapper combiner defers emitting the intermediate key-

value pairs until all input key-value pairs have been processed by the Map function. The

intermediate pairs are stored in memory until a user defined close method is called. This

close method allows the user to combine the data stored in memory, and emit the combined

key-value pairs just before the JVM instance associated with this Mapper task is deleted.

This allows greater user control in the combine phase, however it can only be used when

all of the intermediate key-value pairs fit in memory.

16

Figure 2.1: Data Flow for MapReduce Application [16]

2.1.3 Program Execution.

The steps for program execution in a MapReduce job can be seen in Figure 2.1 [16].

These steps are itemized as they are explained by Dean and Ghemawat in their unveiling of

MapReduce [16] for clarity:

It is important to note that HDFS and the Hadoop Engine discussed above are already

running at the start of this program execution. Also assume that the input data is already

distributed on HDFS in 64MB blocks.

1. A User Program is submitted to the master node of the Hadoop cluster.

2. The JobTracker service on the master node, assigns map and reduce tasks to the

TaskTracker services on idle worker nodes.

17

3. The worker nodes that have been assigned to run a map task read their corresponding

input block, and parse the key-value pairs. The key-value pairs are then passed to the

Map function, defined in the User Program.

4. The intermediate key-value pairs, or the outputs of the map function, are buffered in

memory and periodically written to the local disk. The locations of these intermediate

key-value pairs are passed to the JobTracker service on the master node, which is

responsible for notifying the worker nodes assigned to run a reduce task.

5. When a reduce worker is notified of the location of the intermediate data by the

master node, it reads the data from the map worker’s disk. The reduce worker then

sorts all of the intermediate data by key, so that all key-value pairs with the same key

are grouped together.

6. The reduce worker then passes each intermediate key, and it’s corresponding set of

intermediate values to a separate instance of the user defined Reduce function.

7. The output of the Reduce functions from the same reduce worker are appended, and

written to HDFS. The number of output files is the same as the number of reduce

workers.

2.2 Image Retrieval

Before we continue the discussion of implementing a scalable image retrieval system

with MapReduce, a technical background of image retrieval is needed.

2.2.1 Feature Extraction Background.

Feature extraction is an integral part in efficiently comparing images. An image

feature, in this context, can be defined as a section of an image which displays different

image properties than the areas immediately surrounding it. Depending on the type of

feature detector being used, this section can be a single pixel, an edge, or any type of

18

region. The image properties typically considered when searching for features include, but

are not limited to, intensity, color, and texture.

Among many other properties, the most important property of an image feature is

repeatability. When presented two different images of the same object, a repeatable feature

extractor will yield a large number of the same features detected on the object from both

images. It is important that features are detected consistently, even when an image has

been blurred, re-oriented, rescaled, or transformed in any other manner. Repeatability is

obtained in feature extraction algorithms using two different techniques: invariance and

robustness.

Invariance is achieved by mathematically modeling any expected transformations, and

developing the feature extractor such that the expected transformations have no affect on

the resulting features. Invariance is a good technique when significant transformations are

expected. When the transformations are not expected to be large, robust feature extractors

can be used to achieve reliability. Feature extractors that achieve repeatability through

robustness are designed to be desensitized to the particular small transformations they are

expected to encounter.

Some other important properties of good features according to a survey of features by

Tuytelaars are:

• Distinctiveness: Intensity patterns used for detection should have a high variance.

• Quantity: A sufficient number of features should be detected even on small objects.

The quantity of features detected should be easily throttled by a threshold value.

• Locality: The feature should be detected on a relatively small patch of the image.

• Accuracy: The features should be accurately localized on the image.

• Efficiency: Feature detection should be done as quickly as possible.

19

While these secondary properties of image features are important some are in place

largely to support the primary effort of repeatability. Compromises need to be made when

considering which properties are most important for a particular application. For example,

distinctiveness and locality are competing properties. This is easily demonstrated when

we consider the most localized feature possible, a single pixel. When considering a single

pixel, it cannot be distinguished from another pixel of the same intensity, making it not

very distinctive. On the other hand, if a feature is not localized it will be very distinctive

due to a large area covered and a large amount of information in the feature, however it will

be very susceptible to occlusions and other transformations. Invariance and Robustness

also are competing properties to distinctiveness. As features are desensitized to large

transformations (invariance) and information is thrown away (robustness), the features get

less distinctive.

It is clear from the above discussion that the application must be considered when

choosing the properties necessary to select a feature type. For example, in a laboratory

setting where large transformations and other disturbances can be avoided, a very

distinctive feature would be chosen, since reliability will not be severely affected by a low

level of invariance and robustness. These properties are driven by both the feature detection

and description algorithms.

2.2.1.1 Feature Detector Overview.

Feature detectors can be broken down into general categories: corner detectors, blob

detectors, and region detectors. Well known detectors from each category are itemized

below:

Corner Detectors

• Harris Detector [21]

• SUSAN Detector [43]

20

• Harris-Affine Detector [29]

Blob Detectors

• Hessian Detector

• Hessian-Affine Detector [29]

• Salient Regions [24]

Region Detectors

• Intensity-based Regions [45]

• MSER Detector [28]

• SuperPixels [33]

The detectors listed above are only a small fraction of the detectors that have been

developed over time. These particular detectors are singled out because they have been

used in image retrieval or object recognition research. While it is outside the scope of this

research to explain the mathematical methods behind each of these detectors, the detector

used in this work is explained along with the reason it was selected.

For this research we use the Maximally Stable Extremal Region (MSER) [28] feature

detection algorithm. MSERs were shown to be optimal [31, 19, 13] for object detection,

and were used in [36, 42]. The informal explanation of the process for finding MSER

descriptors as given by Matas [28] is given here. First, we iterate through all possible

thresholds of a gray-scale image. At each threshold, set the pixels with a gray level below

the threshold to black, and the pixels with a gray level above the threshold to white. Now

display the pixels with their white or black values, and step through the thresholds, we

begin with a solid white image. As the threshold increases, black spots and regions begin

to appear. All connected components, white and black, at each threshold are the maximal

21

regions. The MSER features are the regions that remain connected components over a

large range of thresholds. MSER allows features to be excluded based on maximum and

minimum area, and range of thresholds. The properties these regions exhibit that make

them good features are listed below:

• Invariant to affine transformation of image intensities

• Stability: gives robustness to changes in lighting and noise from camera variation

• Multi-Scale detection: This gives locality in features that is important to avoid

occlusions, as well as distinctiveness that is important for feature matching

• Regions can be detected in O(nlog(logn)), where n is number of image pixels

2.2.1.2 Feature Descriptor Overview.

There are also many potential feature descriptors to choose from. A list of the most

common feature descriptors is given below:

• SIFT [27]

• SURF [8]

• HOG [14]

• Spin Images[23]

The Scale Invariant Feature Transform (SIFT) [27] feature description algorithm was

used to describe the detected MSER features in this research. SIFT was shown to be the

optimal descriptor for the MSER [13]. Implementations for describing an MSER region

with a SIFT descriptor is given by Nister [36], and Dahl [13].

An ellipse approximates the MSER region as shown in Figure 1.1b, and the SIFT

descriptor characterizes the region into a 128-dimensional vector. SIFT provides reliability

22

by being invariant to image scale and rotation. SIFT also achieves reliability through

robustness, by being desensitized across a large range of distortion, 3D viewpoint, noise,

and illumination. SIFT descriptors were developed for the purpose of image matching.

They were designed to be highly distinctive allowing for a single feature to be matched

with another feature from a large database. They have been shown to be the most effective

descriptor [30] for image matching. SIFT descriptors are used in most image retrieval and

image matching problems relevant to this work [6, 36, 4, 2, 12, 32].

2.2.2 Hierarchical K-Means Algorithm.

Prior to discussing the BoW and FR image retrieval techniques, both of which involve

Hierarchical K-Means, it is important to explain the Hierarchical K-Means Algorithm.

HKM is an extension on Lloyd’s Algorithm [26], commonly known as k-means clustering.

K-means clustering is used to categorize n observations into k clusters, by placing each of

the n observations into the cluster with the nearest mean. The mean of each cluster, also

referred to as the cluster center, is initialized by randomly selecting k observations from the

set of n observations. Once all n observations are classified into one of the k clusters, the

cluster centers are recalculated. This process is iterated until the observations all remain in

the same cluster. In HKM, each of the k clusters output by Lloyd’s Algorithm on the initial

set of observations are again subjected to Lloyd’s Algorithm.

Figure 2.2 is used for clarity. Initially, all n observations reside in the root node, or

Node 0 as labeled in Figure 2.2. Lloyd’s Algorithm is applied at Node 0, and each of the

n observations are classified into either Node 1,2, or 3. Next, Lloyd’s Algorithm is applied

at Node 1, and each of the observations residing on Node 1 are classified into either Node

4,5, or 6. Loyd’s Algorithm is also applied at Nodes 2 and 3, and all n observations are

classified into leaf level nodes. At each level the clusters are split, and more granularity is

achieved.

23

Figure 2.2: Illustration of a generic tree with branch factor=3, depth=2, and nodes

numbered.

2.2.3 Bag of Words Retrieval Background.

The Bag of Words method for object and scene recognition was introduced by Sivic

and Zisserman [42], with their “Video Google” software. When an image of an object

or a scene from a movie in the “Video Google” database is submitted as a query, “Video

Google” returns the frames that contain that object or scene. This is the same problem as

the image retrieval problem discussed in this research. Their approach was influenced by

text retrieval methods [7], and remains largely unchanged. The steps for their scene and

object retrieval system are shown below:

• Detect MSER features from database frames, and describe them with SIFT

descriptors.

• Build a visual vocabulary, using standard flat k-means, from a subset of the detected

database features.

• Create a visual index, using vector quantization to count frequencies and create an

Inverted File index.

24

• Use a Term-Frequency Inverse Document Frequency (tf-idf) weighting scheme,

along with a normalized scalar product of two vector represented histograms in order

to rank database frames

“Video Google” began a movement in image retrieval. Most research moved to a Bag

of Words type method [12, 38, 48, 15]. In 2011, Aly conducted a benchmarking test [3]

on the leading BoW methods. This study aimed to identify both the most efficient type

of vocabulary, and the most efficient type of index to use. He benchmarks the Min-Hash

index along with the Inverted File index. An inverted file stores, for each visual word,

the images that contain them and how many times they occur in that image. The Min-

Hash index creates hash functions for each image based on the features present in it. He

tests both of these index types against a HKM vocabulary tree [36], and an Approximate

K-Means (AKM) [38] index implemented with kd-trees. Both of these were developed

as improvements on “Video Google”. They attempted to improve retrieval performance

by increasing the vocabulary size, and exploiting fast nearest neighbor searches. Aly

determined that Inverted Files are better indexes for object retrieval in terms of retrieval

times and accuracy. He determined that HKM trees provide retrieval times 10 times faster

than AKM trees, but their accuracy is slightly worse.

The MapReduce BoW image retrieval implementation is largely based on Nister and

Stewenius’s methods using a HKM vocabulary and an Inverted File index, therefore a

formal explanation is shown here starting at the point of constructing the visual vocabulary.

Nister and Stewenius use a vocabulary tree that is built by HKM clustering. A subset

of the detected database features are used for creating the vocabulary tree. As opposed

to the flat vocabulary used by Sivic and Zisserman [42], where k defines the number of

quantization cells, here k defines the branch factor, of the tree. Initially, k-means is run

on the entire training set, defining k cluster centers as children of the root node. Each

feature in the training data is then classified into one of the k clusters represented by the

25

newly defined cluster centers, based on which cluster center it is closest to. This process is

then continued for each new cluster of features down the tree until a maximum depth of L is

reached. This process is shown in Figure 1.2. Once this process is complete, the vocabulary

tree is defined, and the Inverted Files can be built. In order to build the Inverted Files, each

database feature is propagated down the tree, being compared to k cluster centers at each

level. This means that there are kL comparisons made. Each leaf node has an inverted file

associated with it that stores the image id of each image with at least one feature through

that node, and a count of how many features per image go through that node. The inverted

file information of internal, non-leaf, nodes is simply a concatenation of the inverted files

of the nodes beneath them.

Once the inverted files are built, Nister and Stewenius address how to quantify the

relevance of a databse image to a query image. They define the scoring by assigning a

weight wi, to each node i in the vocabulary tree based on entropy. Entries in the query qi

vectors and database di vectors are then defined as:

qi = niwi (2.1)

di = miwi (2.2)

where ni and mi are the number of descriptor vectors of the query and database image,

respectively, with a path through node i. The entropy based weighting wi at each node is

given by:

wi = ln
N
Ni

(2.3)

Where N is the total number of database images, and Ni is the number of database

images with a path through node i. This is known as tf-idf scoring, and is a concept carried

26

over from text retrieval techniques. This weighting scheme provides less consideration to

nodes that are represented by a large percentage of the database images.

A relevance score s between a particular database image and a query image is then

found by calculating the normalized difference between the query and database vectors

defined in Equations 2.1 and 2.2. This is given by:

s(q, d) = ||
q
||q||
−

d
||d||
|| (2.4)

When Equation 2.4 is evaluated in L2 norm,it simplifies to:

||q − d||pp = 2 − 2
∑

i|qi,0,di,0

qidi (2.5)

Nister and Stewenius emphasize that the largest contributor to image retrieval

performance is vocabulary size, and the leaf nodes are much more powerful than inner

nodes. Nister and Stewenius implement stop lists, assigning a weight of 0 to nodes

represented by many images. Use of stop-lists was shown to decrease matching time, with

no negative attempts to performance.

The MapReduce implementation of BoW image retrieval is based on this research,

however significant algorithmic redesign is needed in order to fit the MapReduce

programming model. The MapReduce implementation is shown in Chapter III.

2.2.4 Full Representation Retrieval Background.

Full Representation (FR) is a simpler, less approximated method of image retrieval.

The term Full Representation was, to the best of our knowledge, coined by Aly [5]. The

approach however, was introduced by Lowe [27] as a practical use for SIFT. The general

steps for FR image retrieval, excluding feature extraction steps, are itemized below:

1. Process and store database features in some data structure according to the image

retrieval method being used.

27

2. Search the database feature data structure for nearest neighbors to each query image

feature.

3. Assign a score to database images based on nearest neighbor search results according

to method being used.

4. Find best matches by sorting database images based on score.

As can be seen from the steps above, Full Representation image retrieval is essentially

an application approximate nearest neighbor search. Fast Library for Approximate Nearest

Neighbors (FLANN [34] is a popular library for approximate nearest neighbor search

introduced by Muja and Lowe. In a large study of many popular techniques for approximate

nearest neighbor search, Muja and Lowe found that one of two algorithms achieved the best

performance, depending on the dataset. These two algorithms are HKM and Randomized

Kd-Trees. These are the same two algorithms that were found optimal for building the

vocabulary in BoW image retrieval. Both algorithms are explained below, in the context

of approximate nearest neighbor search with emphasis on the HKM algorithm. In the

following paragraphs, whenever distance is mentioned, it refers to the Euclidean distance

between two vectors given by:

||q − p|| =
√

(q − p) · (q − p) (2.6)

Randomized kd-trees were introduced by Silpa-Anan and Hartley [41] in 2008. To

build a randomized kd-tree, the data is split in half at each level of the tree. The dimension

on which to split the data is randomly chosen from the first D dimensions on which the

data has the greatest variability. In order to search the tree, a priority queue is created with

lowest bin distance first, and largest bin distance last, where the bin distance is the distance

from a particular query feature to the bin center characterizing a leaf node of the kd-tree.

28

A fixed number of leaf nodes are searched, and a fixed number of nearest neighbors are

returned.

The HKM algorithm for approximate nearest neighbor search was improved by Muja

and Lowe [34]. The creation of the HKM tree is very similar to the creation of the

vocabulary tree as described in the previous section. However, instead of quantizing the

database features into a leaf node, and creating an Inverted File, the leaf nodes here are

composed of a collection of database features. Muja and Lowe concluded that when

performing k-means clustering at each level of the tree, 7 iterations are enough to get 90%

of the nearest neighbor performance. This reduces the creation time to only 10% of the time

required when run to convergence at each iteration. In order to search the HKM tree, each

query feature is propagated down the tree into the cluster centered closest to that particular

query feature. A priority queue is kept, and the unexplored paths down the tree are added

to the priority queue in accordance with the query feature’s distance to the cluster at the

end of the path. A fixed number of leaf nodes are searched for nearest neighbors, and a

fixed number of nearest neighbors are returned.

After the nearest neighbor search, the only remaining task to complete image retrieval

is the k-nearest neighbor voting scheme. The k nearest neighbors, returned from the

database, to each query image feature “vote” for the database image that they came from.

The database images are then sorted, and the image with the largest number of votes is

considered the best match.

2.3 Previous Large-Scale and MapReduce Image Retrieval Systems

Aly implemented a [4] distributed FR Kd-Tree algorithm for image retrieval with

MapReduce. Experiments were run with database sizes up to 100M images and using a

2048 node cluster. Recall that kd-trees and HKM trees are both considered state of the art

for FR image retrieval. Although this work is not done on the same scale as the work done

by Aly, it does compliment the large scale work done using kd-trees.

29

White [46] introduced implementations of basic image retrieval algorithms on

MapReduce. These algorithms, and implementations were used as building blocks for this

work. White implemented both a flat k-means clustering algorithm, and a BoW algorithm

using a flat vocabulary on MapReduce.

In 2013, Moise and Shestakov [32, 40], have been researching large scale indexing

and search with MapReduce. They implement a system using an extended Cluster Pruning

algorithm for indexing [32], and an ambiguous hierarchical clustering algorithm [40]. This

hierarchical clustering algorithm is explained as HKM with randomly initialized centers,

with one iteration performed. This is interesting as the index creation time will be greatly

reduced, however image retrieval performance will almost certainly suffer. Moise and

Shestakov ran tests with 100M images on 108 nodes.

30

III. Design and Implementation

When developing a software system, a top down approach is often used. In a top down

design approach the developer establishes high level system requirements, and breaks the

problem down into a series of ambiguous subsystems that contribute to fulfill overall system

requirements. Image retrieval systems are very well suited to the top down approach since

the problem can be broken down into very modular sequential tasks.

While these are the modular tasks that must be accomplished, they are governed by

the requirement to work well with large scale datasets. The requirement of processing

large datasets drove the system design to a MapReduce implementation. These tasks are

then refined to the point where the data structures and necessary operations are determined

so that the algorithms can be designed. Finally the designed algorithms are implemented,

tested, and used in an empirical evaluation.

3.1 Test Environment

3.1.1 Cluster Hardware.

MapReduce was created to take advantage of the aggregate computational power of

large numbers of commodity machines. Unfortunately, no physical clusters of commodity

machines were available for this research. VMware virtualization software is used to

simulate a commodity cluster on a single server. The single server has 2 Intel Xeon 5520

processors, which are specialized for virtualization, 200GB of memory, and 12TB disk

space. The server is running VMware ESXi 5.0.0. VMware vSphere is used to manage

a virtual cluster of 20 virtual machines, each with 9GB of memory, and 200GB of disk

space. The Ubuntu Server 12.10 operating system is installed on each virtual machine in the

cluster. The maximum number of nodes is limited by the available RAM for on the server.

The number of virtual machines that compose the cluster is varied with experiments. While

31

a virtualized environment on a single server would not be an ideal hardware implementation

for a production cluster, it serves the purpose for this research.

3.1.2 Cluster Software.

Many third party software packages are used in the implementation of this software

system. The software packages, and their role in this research are:

• Apache Hadoop 1.2.1 [47]: This was the most current stable version of Hadoop at

the time of this research. Hadoop is the open-source implementation of MapReduce

and HDFS.

• OpenCV [10]: C++ library for Computer Vision tasks. OpenCV’s implementation

of MSER features and SIFT descriptors were utilized.

• Hadoopy [46]: Python wrapper for Hadoop. Hadoopy allows for Hadoop programs

to be written in Python, and gives easy access to useful Hadoop functions. Used for

creation of TypedBytes Sequence Files.

• Boost.Python[1]: Allows for wrapping C++ code to create Python modules. Exposes

full C++ OpenCV libraries, as well as native speeds for computation intensive

functions.

3.1.3 Datasets.

The vast majority of the images used for this research are from the ImageNet [17]

dataset. The ImageNet dataset is a collection of over 14 million images divided into over

20 thousand subsets. For this research, these images serve as confusion images. In other

words, these images only provide filler for the image database, and no attempt is made to

retrieve them.

Query datasets are used in order to quantify the retrieval precision. In this research,

the Caltech Buildings dataset [6] and the benchmark dataset used in [36] are used as

32

query datasets. The Caltech Buildings dataset includes images of 50 different buildings

around the Caltech campus. There are five images of each building taken from all different

positions. The UK Benchmark dataset is a collection of 2550 different household and office

objects. Each object was photographed with four different orientations.

Figure 3.1: Caltech Buildings Dataset Sample

From each image category in the query datasets, one of the images is selected as a

ground truth image. This ground truth image is inserted into the database among all of the

confusion images. The remaining images in each category of the query datasets serve as

the query images. These images are used to query the database with the expectation that

the ground truth image from their respective category is returned.

33

Figure 3.2: UK Benchmark [36] Dataset Sample

3.2 Implementation

The implementation discussed here, is the first contribution of this thesis. Algorithms

and their relations to data structures, are rethought in order to efficiently fit the MapReduce

programming model. The restructuring of traditional image retrieval techniques to fit the

MapReduce programming model, is the primary method used to accomplish the objectives

of this research. Pseudo code is shown in the following sections to demonstrate the details

of algorithmic restructuring for MapReduce implementations.

As discussed earlier in this document, there are three principal tasks that need to be

implemented for an image retrieval system. First, an image retrieval system must extract

features from a large database of images. Next, the database features must be indexed to

enable fast search. Finally the system must accept query images, and search the database

34

for ground truth images associated with the query images. Two design approaches are taken

for both the indexing and the database search tasks, and a comparison between the two is

done.

3.2.1 HDFS Data Representation.

Before Hadoop can be used to begin the image retrieval process, the image database

must be placed on HDFS. Recall from Chapter II that the images must be repackaged into

sequential binary representation of key-value pairs, or a TypedBytes SequenceFile. This is

made easy with the HDFS function implementations in Hadoopy. The ”writetb” function

in Hadoopy, takes two inputs: an HDFS filepath, and a Python Iterator of key-value pairs.

The key-value pairs chosen to get the database imagery onto HDFS are:

• key: ImageName (string)

• value: ImageData (binary image data)

The Python Iterator is written to include all databse images. After executing

this function, the entire database image collection is placed on HDFS in TypedBytes

SequenceFiles, each with approximately 1000 images. This is not a MapReduce job, it

is executed from the client machine upon which it was called.

3.2.2 Feature Extraction in MapReduce.

As is described in Chapter II, feature detection involves first detecting features in the

set of database images, and then describing the detected features.

This is a Map only job, and is a prime example of an “embarrassingly parallel” task.

There is no Reduce function because in feature detection, there is no data dependency

between the images and therefore nothing to be gained by aggregating the output of the

Map function in any way. The lack of data dependency between the images in this task

indicates that the amount of parallelization possible for this is limited only by the size of

our cluster. The “detectFeatures” and “extractDescriptors” functions were implemented in

35

function Map(key, value)

. key: string clusterID

. value: (string ImageName , Mat ImageData)

MS ER f eatures⇐ detectFeatures(ImageData)

S IFTdescriptors⇐ extractDescriptors(MS ER f eatures)

for feature In SIFTdescriptors do

Yield (′0′, (ImageName, f eature))

end for

end function

Figure 3.3: MapReduce Feature Extraction Algorithm

C++ using the OpenCV libraby. The C++ implementation is wrapped with Boost.Python,

so that upon compilation a Python module with calls to the C++ functions was created.

Note that the key value being yielded by this Map function. The string “0” represents

cluster “0”, or the root node of the tree.

3.2.3 Index Creation in MapReduce.

The next step in creating a MapReduce image retrieval system, is creating an index

of the database features. MapReduce is well suited for indexing large datasets. In fact,

Inverted File creation for text documents was used by Dean and Ghemawat [16], to

showcase the usefulness of MapReduce. Google uses MapReduce to produce the data

structures used to index web pages for performing Google searches [16]. We implement

two indexing methods: an Inverted File index built from an HKM vocabulary tree for BoW

image retrieval, and an HKM tree for FR image retrieval.

The MapReduce implementation of HKM is used for building both types of indexes.

HKM is used in BoW retrieval for building the visual vocabulary tree, and in FR the HKM

36

tree serves as the index. The Map, Combine, and Reduce Functions for the MapReduce

Implementation of Lloyd’s Algorithm are shown in Figures 3.4, 3.5, 3.6, respectively.

This implementation is adapted from the k-means implementation given by White in [46].

Figure 3.7 shows the process of transforming this flat MapReduce k-means algorithm into

a hierarchical application.

function Map(key, value)

. key: string clusterID

. value: (string ImageName , vector feature)

clusterCenters⇐ Load(clusterCenters.pkl)

newCluster ⇐ assignCluster(clusterCenters[clusterID], f eature)

Yield (newCluster, (ImageName, f eature)

end function

Figure 3.4: MapReduce K-Means Algorithm Map Function

Prior to the first iteration of the k-means algorithm, recall that the k cluster centers

must be initialized. These cluster centers are chosen randomly from the set of data to be

clustered, and written locally to a python dictionary data structure. The cluster centers

are written as the value, with the cluster ID as the key. This dictionary is serialized using

the Pickle Python module, and loaded into memory on each Mapper node in the Hadoop

cluster. The “assignCluster” function is implemented in C++ with the Boost.Python [1]

wrapper to create a Python module. This function takes in a feature, as well as the k

candidate cluster centers to which this feature can be assigned. The Euclidean distance

between the feature and each candidate cluster center is calculated using Equation 2.4. The

candidate cluster center with the smallest Euclidean distance from the feature is returned,

and the feature is assigned to that cluster.

37

function Combine(key, values)

. key: string clusterID

. values: Iterator (string ImageName , vector feature)

count ⇐ 0

f eatureS um⇐ 0

for (ImageName,feature) In values do

count+ = 1

f eatureS um+ = f eature

end for

Yield (clusterID, (f eatureS um, count))

end function

Figure 3.5: MapReduce K-Means Algorithm Combine Function

Before passing the intermediate data to Reducer nodes, all key-value pairs with the

same keys are combined by the Combine function shown in Figure 3.5. The Combine

function takes in the output of the Map function, and sums features that share a common

cluster and keeps track of how many have been summed. These partial sums and counts

are then yielded, and there is only one output for each cluster per Mapper. It is easy to see

how the Combine reduces network traffic and execution time.

Finally, in the Reduce function shown in Figure 3.6, the new cluster centers are

calculated. The Reduce function takes in the output from the Conbine function. All partial

sums with the same cluster Id are summed, and their associated partial counts are summed.

The final sum is divided by the final count to give the cluster center. The yielded key-value

pairs from the Reduce function are written to HDFS, as the final output of a single iteration

38

function Reduce(key, values)

. key: string clusterID

. values: Iterator (vector featureSum , int count)

f inalCount ⇐ 0

f inalFeatureS um⇐ 0

for (featureSum,count) In values do

f inalCount+ = count

f inalFeatureS um+ = f eatureS um

end for

newCenter ⇐ f inalFeatureS um/ f inalCount

Yield (clusterId, newCenter)

end function

Figure 3.6: MapReduce K-Means Algorithm Reduce Function

of k-means. These key-value pairs are read from HDFS, and the local dictionary of cluster

centers is updated with this information.

Figure 3.7 shows the full process for HKM in MapReduce. The functions shown in

Figures 3.4, 3.5, and 3.6, represent a single MapReduce program. They perform a single

iteration of k-means on an entire level of a tree in parallel. For succinctness in Figure 3.7,

this program will be referred to as “kMeans Full Iteration”.

The tree is built level by level starting at the root node and moving down. It is

important to realize that the “kMeansFullIteration” MapReduce program performs an

iteration of k-means on the entire current level of the tree. This is made clear by stepping

through the algorithm to the second level. At the root level, the only node is the root

node and all of the features are in the root node (‘0’), see Figure 3.3. Initial cluster

39

1: function FullProcess

2: for level < maxDepth do

3: for node On currentLevel do

. Choose k random features from each node for initial cluster centers

4: Write(clusterCenters.pkl)

5: end for

6: for iteration < maxIterations do

7: MapReduce:kMeansFullIteration

8: Update(clusterCenters.pkl)

9: end for

10: MapReduce:kMeansMapFunction

11: Delete:previousIterationData

12: end for

13: end function

Figure 3.7: Full Process for MapReduce Hierarchical K-Means Algorithm

centers are chosen as cluster centers for the k children nodes of the root node. Next,

the “kMeansFullIteration” MapReduce program is run, and the cluster centers are refined.

Finally, the “kMeansMapFunction”, shown in Figure 3.4 is run to classify all features into

the new clusters, based on the new refined cluster centers, and the old HDFS cluster data

is deleted. Now, all data on HDFS is classified in clusters [‘00’,‘01’,....,‘0k’]. Back to

the beginning of the algorithm, we choose k random features from each of these clusters

to represent the cluster centers of each of their k children. The “kMeansFullIteration”

program then refines all of these cluster centers, and the algorithm continues until the tree’s

prescribed maximum depth is reached.

40

The process shown in Figure 3.7 shows the process for creating a HKM tree. The

vocabulary tree used for creating the Inverted File for BoW image retrieval is simply the

dictionary stored in the “clusterCenters.pkl” file. When using this algorithm to build the

vocabulary tree, the depth of the tree is chosen by the user based on the number of ”visual

words”, or leaf nodes, desired. The number of leaf nodes is given by:

numWords = kL (3.1)

where k is the tree branch factor, and L is the depth of the tree. When building the tree or

FR retrieval, the maximum depth of the tree is reached when one of the clusters contains k

or less features. This is checked during the Reduce function of the “kMeansFullIteration”

program. When this condition is met, the FR HKM index is built by running the Reduce

function shown in Figure 3.8, as the Reducer for the “kMeansMapFunction” that is run on

line 10 of Figure 3.7.

function Reduce(key, values)

. key: string clusterID

. values: Iterator (string ImageName, vector feature)

f eatures⇐ []

for (ImageName,feature) In values do

f eatures.append[(ImageName, f eature)]

end for

Yield (clusterId, f eatures)

end function

Figure 3.8: Reduce Function for Building FR HKM Index

41

Figure 3.8 shows the function that runs as the complimenting Reducer for the

”kMeansMapFunction” that is run on line 10 of Figure 3.7 as soon as one of the clusters

contains k features or less. This amount of granularity was shown to be optimal [34] The

result is a list containing tuples of (ImageName, feature) associated with each cluster, and

is the FR HKM Index.

While the algorithm shown in Figure 3.7 creates the necessary vocabulary tree, another

MapReduce function is needed to create the Inverted File for BoW image retrieval. This

function is shown in Figures 3.9 and 3.10.

function Map(key, value)

. key: string clusterID

. value: (string ImageName , vector feature)

clusterCenters⇐ Load(clusterCenters.pkl)

for level < maxDepth do

newCluster ⇐ assignCluster(clusterCenters[clusterID], f eature)

clusterId ⇐ newCluster

end for

Yield (clusterId, ImageName)

end function

Figure 3.9: MapReduce Map Function for Creating Inverted File

In Figure 3.9 the “clusterCenters.pkl” file serves as the vocabulary tree. Each feature

from the entire set of database features is classified into the leaf node with the closest cluster

center, using the “assigncluster” function explained above in a for loop. Once the feature is

assigned a cluster, we no longer need the feature data because the Inverted Files only store

42

function Reduce(key, values)

. key: string clusterID

. values: Iterator(string ImageName)

dict ⇐ emptyDictionary

for ImageName In values do

dict[ImageName]+ = 1

end for

Yield (clusterId, dict)

end function

Figure 3.10: MapReduce Reduce Function for Creating Inverted File

occurrences per image, per leaf cluster. The Reduce function, shown is Figure 3.10 defines

the Inverted File using a dictionary. Each time an image name occurs in the output of the

Map function, it is counted as a tally. For each clusterId, a dictionary is built storing the

feature occurrences per image.

3.2.4 Scoring and Retrieval in MapReduce.

The final step after creating an index, is using that index to score database image

relevance against a query image, and return the most relevant images. While the previous

steps are done off-line in a preprocessing phase, this step is an on-line phase. The first

part of this phase involves detecting, and classifying features in the query images. This

is done locally, since the query datasets are relatively small. The “clusterCenters.pkl” file

created during the index creation stage for both types of indexes, is used to classify the

query features. A dictionary is created and stored locally to represent the query data. This

query data dictionary is then serialized to a Pickle file named “queryData.pkl” for use on

the Hadoop cluster. This query data dictionary contains the feature vector, the query image

43

from which the feature came, and the cluster to which the feature was assigned. By storing

the query image, we are able to compare many query images to the database images in

parallel. The algorithm for locally creating the query data dictionary is shown in Figure

3.11.

function ProcessQueryImages

clusterCenters⇐ Load(clusterCenters.pkl)

queryImages⇐ Load(/QueryImageFile)

queryData⇐ emptyDictionary

for image In queryImages do f eatures⇐ detectFeaturesimage

for feature In features do

clusterID⇐ assignCluster(clusterCenters, f eature)

if clusterID In queryData.keys then

queryData[clusterID].append((queryImageName, f eature))

else

queryData[clusterID]⇐ [(queryImageName, f eature)]

end if

end for

end for

end function

Figure 3.11: Processing Query Images for FR Image Retrieval

Now that the features in the query images have been extracted and classified,

comparisons to database images can be made. The methods for BoW and FR are both

explained below. It is important to note that the BoW retrieval technique uses the Inverted

44

File index, and the FR retrieval technique uses the FR HKM tree index. Figures 3.12 and

3.13 shows the MapReduce k-nearest neighbor voting program for FR image retrieval.

function Map(key, value)

. key: string clusterID

. value: (string databaseImageName , vector databaseFeature)

queryData⇐ Load(queryData.pkl)

if clusterID In queryData.keys then

for (queryImageName,queryFeature) In queryData[clusterID] do

dist ⇐ EuclideanDist(queryFeature, databaseFeature)

Yield (queryImageName, (queryFeature, databaseImageName, dist))

end for

else

. DoNothing

end if

end function

Figure 3.12: Map Function for FR Query/Database Image Comparison

Figure 3.12 is the Map function for the program that uses a k-nearest neighbor

voting scheme for making comparisons between the database and query images in a FR

MapReduce image retrieval system. The Map function takes in a single key-value pair

from the FR HKM tree index. If there are any features from query images that reside in

the same cluster as this database feature from the FR HKM index, the distance between the

database feature and the query features are calculated. If there are no features from query

images that reside in the same cluster as this database feature, we do nothing and move on

to the next key-value pair from the FR HKM database.

45

function Reduce(key, values)

. key: (string queryImageName

. values: Iterator(vector queryFeature, string databaseImageName, double dist)

topMatches⇐ emptyDictionary

intvotesPerQueryFeature

for (do(queryFeature,databaseImageName, dist) In values

if length(topMatches[queryFeature])<=votesPerQueryFeature then

topMatches[queryFeature].append((databaseImageName, dist))

sort(topMatches[queryFeature]) . ascending sort on dist

else

if dist < topMatches[queryFeature][votesPerQueryFeature - 1] then

delete topMatches[queryFeature][votesPerQueryFeature − 1]

topMatches[queryFeature].append((databaseImageName, dist))

sort(topMatches[queryFeature]) . ascending sort on dist

end if

end if

end for

votingData⇐ emptyDictionary

for databaseImage In topMatches.values do

votingData[databaseImage]+ = 1

end for

Yield (queryImageName, votingData)

end function

Figure 3.13: Reduce Function for FR Query/Database Image Comparison

46

Figure 3.13 shows the Reduce function for the program that uses a k-nearest neighbor

voting scheme for making comparisons between the database and query images in a FR

MapReduce image retrieval system. This function takes in the intermediate data from the

Map function shown in Figure 3.12, and reorganizes the data in order to tally the votes

based on the distances between query and database features. A dictionary is built with the

count of votes for each database image with a minimum of one vote, when compared to the

query image named in the input key. The database images with the highest number of votes

are considered the best matches for the query image named in the input key. A key-value

pair is written to HDFS with a voting data dictionary for each query image.

Scoring and Matching with the Inverted File, requires a different MapReduce program.

Similar to FR, we need to detect and classify features in order to use the Inverted Files for

BoW image retrieval. Instead of storing the features along with the cluster to which they

have been classified, we only store occurrences per cluster, per image. This processing

of the query images is done with the same program used for building the inverted files

of the database images. The algorithms that compose this program are shown in Figures

3.9 and 3.10. The Inverted Files characterizing the query images are read from HDFS,

and written to a local dictionary with the keys being cluster Ids, and the values being lists

of tuples of the form ccurrences) where “occurrences” is the number of features from the

query image of n(queryImageName, name “queryImageName” that were quantized into

the cluster corresponding to the key clusterID. This local dictionary is serialized to a Pickle

file called “queryIF.pkl”.

To score the database images relevance to the query images, we refer back to Equation

2.5, where qi and di are defined in 2.1 and 2.2 respectively. The Map function for comparing

database and query images using the Inverted Files is shown in Figure 3.14. Here, we use

the tf-idf weighting scheme, and we take advantage of the inverted file by only performing

a multiplication, when both a query image and a database image have a feature in the

47

cluster at hand. While submitting multiple query images at the same time complicates the

programs, extra complication reduces the amount of overhead and disk seek time incurred

by the MapReduce program.

function Map(key, value)

. key: string clusterID

. value: dict featureCount

score⇐ emptyDictionary

weight ⇐ ln N
length(f eatureCount.keys)

queryIF ⇐ Load(queryIF.pkl)

if clusterID In queryIF.keys then

for (queryImageName, occurences) In queryIF[clusterID] do

for (databaseImageName) In featureCount.keys do

partialS core ⇐ f eatureCount[databaseImageName] ∗ weight ∗

occurrences ∗ weight

Yield ((queryImageName, databaseImageName), partialS core)

end for

end for

else

DoNothing

end if

end function

Figure 3.14: Map Function for BoW Query/Database Image Comparison

48

function Reduce(key, values)

. key: ((string queryImageName, string databaseImageName))

. values: Iterator(int partialScore)

totalS core⇐ 0

for partialScore In values do

totalS core+ = partialS core

end for

f inalS core⇐ 2 − 2 ∗ totalS core

Yield (queryImageName, (databaseImageName, f inalS core))

end function

Figure 3.15: Reduce Function for BoW Query/Database Image Comparison

Figure 3.15 shows the Reduce function for comparing database and query images

using the Inverted Files. Here we are combining the partial scores that are yielded from

Map functions when a database and query image both have at least one feature in the cluster

used as input to the Map function. Once the partial scores have been summed, the relevance

score between the query and database images are computed by Equation 2.5. These scores

are copied from HDFS, and a simple sort returns the order of the best matches.

3.3 Experimental Methodology

As is stated in Chapter I, the goal of this research was to design and implement a

scalable HKM image retrieval system using MapReduce. Most of the problems that exist

with current image retrieval systems are related to the scale of the database. Some of

these problems are storage of database index, database index creation time, image retrieval

throughput, and image retrieval accuracy. This research shows linear scalability in terms of

49

database feature storage, database index creation, and image retrieval throughput. We also

discuss why this system is not scalable in terms of image retrieval accuracy.

There are two methods for demonstrating scalability. These methods are strong and

weak scalability. Strong scalability involves showing how a parameter varies with number

of computing nodes and fixed data size. While weak scalability involves showing how a

parameter varies with number of computing nodes for a fixed data size per processor. For

strong scalability to be considered linear, the chosen parameter must decrease at a rate

equal to the rate of the increasing number of computing nodes. For weak scalability to be

considered linear, the chosen parameter must remain constant as the data size increases at

the same rate as the number of computing nodes. In this work, we focus on weak scalability.

Scaling up the nodes in a cluster to meet the needs of increasing amounts of data is the most

common use case for MapReduce, and therefore we use the scalability metric that directly

characterizes that use case.

First, we examine the scalability of the database index storage. The scalability of the

storage is unique because the storage size is not dependent on the number of computing

nodes used to build it. As a result, the concepts of strong and weak scalability are not

applicable. In order to show the scalability of the database index storage, we simply report

the size of the FR HKM and Inverted File database indexes for various data sizes. Table

3.1 shows the tests that are run, in order to show scalability with respect to index storage.

While the number of leaf nodes in the Inverted File affect the size of the index, no heuristic

is known for choosing the number of leaf nodes. Therefore, the number of leaf nodes is

held constant for each size data set at 1,000,000 leaf nodes. Another parameter that is

held constant, that may also affect the outcome of the Inverted Index experiments is the

percentage of database features used for training data. We use 10 percent of the database

features for training data to build all Inverted Files.

50

Database Index Storage Scalability Tests

Index Type Number of Images

Inverted Files
500,000

FR HKM

Inverted Files
1,000,000

FR HKM

Inverted Files
2,000,000

FR HKM

Table 3.1: Database Index Storage Scalability Tests: In each scenario, database index size

is recorded.

Scalability is shown by examining the rate at which the database index size varies with

the size of the data set. Linear scalability is achieved when the index size increases at a

rate equal to the rate of the increase in data size. An increase in index size growth rate that

is less than the rate of increase in data size, is better than linear and is highly desirable.

A one-tailed z-test will be used in order to show with statistical significance whether the

scalability of the index storage is linear or better.

Next, we test the scalability of the time to create the index. For the weak scalability

test, we increase the data size with the number of cluster nodes. This allows us to examine

how the time to create the database index varies with increasing cluster size, and fixed data

size per cluster machine. Again, a one-tailed z-test will be used in order to show with

statistical significance whether the scalability of the index creation time, for each type of

index, is linear or better.

The final aspect of this system that we statistically exam, is the scalability of the

retrieval throughput. The retrieval throughput is defined as the time taken per image to

51

Index Creation Time: Weak Scalability

Index Type Number of Cluster Nodes Number of Images

Inverted Files
5 500,000

FR HKM

Inverted Files
10 1,000,000

FR HKM

Inverted Files
20 5,000,000

FR HKM

Table 3.2: Index Creation Time: Weak Scalability

return the results of best matches in the database. We examine the weak scalability for

the CalTech Buildings dataset presented earlier in this Chapter. The test procedure for

examining the scalability of the retrieval throughput is shown in Figure 3.3. For the k-

nearest neighbor search in the retrieval and comparison step of FR image retrieval, we set

k equal to the branch factor of the tree. The only variance in the retrieval throughput, for

both FR and BoW systems, is introduced through the variance in the index. In order to

capture how the varying indexes affect the throughput, we test throughput on multiple FR

and BoW indexes and present the results with a specified level of confidence.

The last piece of the system observed is the retrieval performance. Retrieval

performance at n is defined as the percentage of correct ground truth images that are

returned in the top n results. The retrieval performance is only presented with mean and

standard deviation here. Retrieval performance is an artifact of the BoW and FR methods,

and is not affected by this parallelization or implementation. It has been shown in all

image retrieval systems, that as the size of the database image set increases the retrieval

performance decreases. For each of the database sizes previously used and for each of

52

Scalability of Retrieval Throughput

Dataset Index Type Number of Cluster Nodes Number of Images

Caltech Buildings

Inverted Files
5 500,000

FR HKM

Inverted Files
10 1,000,000

FR HKM

Inverted Files
20 2,000,000

FR HKM

Table 3.3: Retrieval Throughput: Weak Scalability

the query datasets, we examine the percentage of times the correct ground truth image is

returned in the top n results, over a range of values for n. The range of n values, used for

each scenario is n = [1, 10, 30, 50]. In other words, we examine the percentage of cases in

which the ground truth image is ranked, according to the score assigned in the retrieval and

comparison step: as the top image, in the top ten images, in the top thirty images, etc.

53

IV. Results and Analysis

The results here are presented and analyzed in the order of the order of the testing

procedures discussed in Chapter III. We begin by examining the database index storage

scalability. The approximate sizes of the raw database image data sets, subsets of the

imageNet [17] dataset, are shown in Table 4.1

Raw Database Image Size

Number of Images Size of Data

500,000 250GB

1,000,000 500GB

2,000,000 1TB

Table 4.1: Raw Database Image Size

We extract approximately 300 features from each database image. The total

approximate number of features, the approximate size of the set of features, and the

approximate time taken to extract features for each database image set is shown in Table

4.2.

The time to extract features is discussed in the index creation time section. The index

storage size mean (µ) and standard deviation (σ) for the Inverted Files index, and FR HKM

index are shown in Table 4.3. It is important to note the fixed parameters, training data

and number of leaf nodes discussed in Chapter III. While these parameters would certainly

have an affect on the index size, we hold them constant in order to isolate the affect that the

growing data size has on the index size.

54

Total Approximate Feature Count and Feature Storage

Number of Images Number of Features Size of Feature Set

500,000 150M 25GB

1,000,000 300M 50GB

2,000,000 600M 100GB

Table 4.2: Total Approximate Feature Count and Feature Storage

4.1 Index Storage Scalability

Index Storage Size

Index Type Number of Database Images Mean Index Size (µ) Standard Deviation (σ)

Inverted Files

500,000 2.62GB 0.00091

1,000,000 5.13GB 0.0019

2,000,000 9.41GB 0.0084

FR HKM

500,000 26.30GB 0.002

1,000,000 51.72GB 0.0069

2,000,000 103.02GB 0.013

Table 4.3: Total Index Storage Size

It is clear from the standard deviations associated with the index storage results that

there is very little variance in this metric. This is simply because all of the information is

being stored in each case. The small variance comes from the random initialization of the

cluster centers, that can cause some features to end up in different leaf nodes from test to

55

test. This has a very small effect on the storage when an image previously unrepresented in

a node becomes represented.

600000 800000 1000000 1200000 1400000 1600000 1800000 2000000
Number of Images

4

6

8

10

In
de
x
Si
ze
 (G

B)
Inverted File Index Size Scaling

Actual Size
Linear Scaling

Figure 4.1: Inverted File Index Storage Scaling

Figure 4.1 shows graphically that the mean of the Inverted File Index Size scales better

than linearly. We take the index size at 500,000 database images, and increase that value at

the same rate as the number of database images increases to get the “Linear Scaling” line.

It is clear that our Inverted File mean index size is growing at a lower rate than that of the

database image collection. Here we use the one-tailed t-test to show statistical significance

in the linear scalability. We perform the t-test in order to test the hypothesis that the index

size is less than or equal to the maximum size allowed for linear scalability. The relevant

equation for performing the t-test is shown in Equation 4.1.

t =
X̄ − µo

s
√

n

(4.1)

56

where s is the sample standard deviation, n is the sample size, X̄ is the sample mean, and

µ0 is the null hypothesis. Now we can set the null hypothesis to the maximum value size

for linear scalability for 1,000,000 database images and 2,000,000 database images and

determine the level at which we are confident that the index storage is at least linearly

scalable. In order to calculate the confidence value, all of the inputs to the one-tailed t-test

are plugged into Equation 4.1, and the t value is calculated. The t value, along with the

Degree of Freedom (n-1), is used in a lookup table, and the confidence is given. Now that

the t-test has been explained, further confidence levels are given along with the necessary

inputs without explanation.

Inverted File Statistical Storage Scalability

Number of Images Inputs Confidence

1,000,000

µ0 = 5.24

99.5%(t = −81.88)
X̄ = 5.13

s = 0.0019

n = 2

2,000,000

µ0 = 10.48

99.75%(t = −180.14)
X̄ = 9.41

s = 0.0084

n = 2

Table 4.4: Inverted File Statistical Storage Scalability

One interesting observation, is that the Inverted File index is roughly one order of

magnitude less than the FR HKM index. Also, the FR HKM index is only slightly larger

than the set of detected features in each database size. This is expected, since the FR HKM

57

400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000
Number of Images

20

30

40

50

60

70

80

90

100

110

In
de

x
Si

ze
 (G

B)

FR HKM Index Size Scaling

Actual Size
Linear Scaling

Figure 4.2: FR HMKM Index Storage Scaling

index is simply an organization of the detected features. The most interesting observation

then, is that the Inverted Files index reduces the amount of storage necessary by a full

order of magnitude when compared to the set of detected features. The figures and tables

presented above, show that this image retrieval system is linearly scalable with respect to

data storage. Next, we address the scalability with respect to index creation time.

4.2 Index Creation Time

Due to the ”embarrassingly parallel” nature of feature detection and extraction, it is

assumed to be linearly scalable. Since there is absolutely no data dependency between the

individual database images from which features are detected, there is nothing prohibiting

linear scalability. In this section, we begin to time index creation, after detection and

extraction of features.

Due to the iterative nature of HKM, it has very large index creation times. Index

creation is a preprocessing step in image retrieval that is performed only one time, therefore

58

FR HKM Statistical Storage Scalability

Number of Images Inputs Confidence

1,000,000

µ0 = 52.6

99.75%(t = −180.36)
X̄ = 51.72

s = 0.0069

n = 2

2,000,000

µ0 = 105.2

99.75%(t = −237.15)
X̄ = 103.02

s = 0.013

n = 2

Table 4.5: FR HKM Statistical Storage Scalability

large index creation times are generally accepted, if they lead to improvements in other

areas. This testing shows differences in the index creation times of Inverted Files and FR

HKM. First, we examine creation times for Inverted Files indexes. Again, all inverted files

were built with 1,000,000 leaf nodes and 10% of the database image features are used for

training.

Inverted File Creation Times

Nodes in Cluster Database Images Mean Creation Time (µ) Standard Deviation (σ)

5 500,000 174.1 min 2.37 min

10 1,000,000 176.36 min 2.26 min

20 2,000,000 175.08 min 2.04 min

Table 4.6: Inverted File Creation Times

59

600000 800000 1000000 1200000 1400000 1600000 1800000 2000000
Number of Images

160

170

180

190

In
de

x
Cr

ea
tio

n
Ti

m
e

(m
in

)

Inverted File Index Creation Time Scaling

Creation Time
Linear Scaling

Figure 4.3: Inverted File Creation Time Scaling

It is clear from Figure 4.3 that we do not have linear scaling. This can be attributed to

randomness in cluster initialization. If the random initialization chooses cluster centers that

cause features to be distributed unevenly, we have a lack of load balancing. Underutilized

nodes sit idle, while other nodes process more than their fair share and this is inefficient.

While we cannot show that the Inverted File index creation time has linear or better weak

scalability, we use the two-sided t-test to construct 95% confidence bounds to show how

we can expect the weak scalability of the index creation. The resultant 95% confidence

bounds are shown in Table 4.7.

These confidence bounds tell us that statistically we can be 95% confident that when

we create a database index as described in this work, the time to create it will fall between

the upper and lower limits. While not as strong a case as for index storage, these confidence

bounds show that the Inverted File creation is approximately linearly weakly scalable.

60

IF Creation Times 95% Confidence Bounds

Cluster Nodes Database Images Lower Limit Upper Limit

10 1,000,000 172.76 min 179.96 min

20 2,000,000 171.83 min 178.33 min

Table 4.7: Inverted File Creation Times with 95% Confidence

Next, we examine creation times for FR HKM indexes. These indexes involve

performing HKM on the entire dataset, as opposed to the training subset to create Inverted

Files. This leads to longer index creation times, however it involves less approximation.

The first attempt at implementing an FR HKM in this work was very inefficient. No

Combiner was implemented, and therefore at the top level of the HKM tree, every one

of the n features in the database was classified into k nodes. Not implementing a Combiner

meant that approximately n
k features were sent to only k Reduce tasks. After monitoring

this implementation running for a week, we implemented the Combiner function, and the

index creation time dramatically decreased.

FR HKM Index Creation Times

Nodes in Cluster Database Images Mean Creation Time (µ) Standard Deviation (σ)

5 500,000 1492.21 min 9.16 min

10 1,000,000 1513.4 min 10.26 min

20 2,000,000 1522.74 min 8.65 min

Table 4.8: FR HKM Index Creation Times

61

600000 800000 1000000 1200000 1400000 1600000 1800000 2000000
Number of Images

1300

1400

1500

1600

In
de
x
Cr
ea
tio

n
Ti
m
e
(m

in
)

FR HKM Index Creation Time Scaling

Creation Time
Linear Scaling

Figure 4.4: FR HKM Index Creation Time Scaling

As can be seen in Figure 4.4, again we cannot show that the creation times for FR

HKM indexes are always linear or better. This happens due to the same randomness that

caused the Inverted Files to diverge from linear weak scalability. In the FR HKM index

creation, we get larger deviations because, we are clustering very large amounts of data.

We again use the two tailed t-test in order to determine the region on which we are 95%

confident.

FR HKM Creation Times 95% Confidence Bounds

Cluster Nodes Database Images Lower Limit Upper Limit

10 1,000,000 1487.91 min 1538.69 min

20 2,000,000 1501.25 min 1544.23 min

Table 4.9: FR HKM Creation Times with 95% Confidence

62

The 95% confidence bound (n=3) on the FR HKM index shows a non-linear weak

scaling. This is most likely due to the built in scaling of the algorithm. The HKM tree

automatically grows to more leaf nodes as the data grows, since the tree reaches maximum

depth when a node contains less nodes than the branch factor of the tree. Even with the

tree growing, the weak scalability is near linear which, in practice, is much more common

than linear weak scalability. In the linear weakly scalable system, the amount of data per

node stays constant as the amount of data and the number of nodes both increase. In this

case as the number of nodes and the amount of data are increased, we see a decrease in the

productivity of the cluster in terms of images indexed per second at each node.

4.3 Retrieval and Comparison Throughput

The retrieval and comparison throughput is defined as the number of images matched

with the k best matches from the database per second. We observe the weak scalability

of this throughput for both BoW and FR retrieval approaches using the CalTech Buildings

query dataset. We start with BoW retrieval using the CalTech Buildings Dataset, which

uses the Inverted Files index to search the database. Timing this process begins with query

features being detected and classified according to the index to which the queries will be

submitted.

Figure 4.5 shows clearly that the FR and BoW retrieval systems have much better than

linear weak scalability. This is because as the size of the indexes increase, the number of

comparisons that must be made increases at a much slower rate. For the FR system, as the

size of the database increases, the time taken to classify the query features prior to being

compared to the index takes slightly longer because the tree is larger. The comparison to

the index takes on average the same amount of time no matter the size of the database.

This explains why the throughput increases linearly with the number of machines added to

the cluster. For the BoW system, since we fixed the number of leaf nodes to 1,000,000,

63

BoW and FR Throughput Results

Nodes in Cluster Database Images Mean Throughput (µ) Standard Deviation (σ)

FR Throughput Results

5 500,000 0.89 0.094

10 1,000,000 1.62 0.015

20 2,000,000 2.89 0.067

BoW Throughput Results

5 500,000 2.23 0.031

10 1,000,000 5.13 0.043

20 2,000,000 8.97 0.018

Table 4.10: BoW and FR Throughput Results

FR Throughput 95% Confidence Bounds

Cluster Nodes Database Images Lower Limit Upper Limit

10 1,000,000 1.58 1.66

20 2,000,000 2.72 3.06

BoW Throughput 95% Confidence Bounds

Cluster Nodes Database Images Lower Limit Upper Limit

10 1,000,000 5.02 5.23

20 2,000,000 8.93 9.01

Table 4.11: FR and Bow Throughput with 95% Confidence

the only change as the database grows is the number of multiplications that need to be

done at each visual word represented in the query image. The throughput of the system is

64

600000 800000 1000000 1200000 1400000 1600000 1800000 2000000
Number of Images

1

2

3

4

5

6

7

8

9

Th
ro
ug
hp
ut
 (I
m
ag
es
/s
ec
)

FR and BoW Throughput on CalTech Buildings

BoW
FR

Figure 4.5: Weakly Scaled Throughput for FR and BoW Retrieval

also important, because it essentially represents client wait time. We have shown that the

throughput for both types of image retrieval systems, has weak scalability much better than

linear.

4.4 Retrieval Performance

Retrieval Performance is the last metric that we examine. We show retrieval

performance at k, or the percentage of times that the correct ground truth image is returned

in the top k results. We do not do any formal analysis on the retrieval performance, because

our implementation has not changed any techniques that would directly affect retrieval

performance. It is well documented that as the database image set increases, the retrieval

performance suffers tremendously. This is intuitive: as there are more database images to

get confused with the correct image, the retrieval algorithms get confused more often. We

show performance at n = [1, 10, 30, 50].

65

Figures 4.6a and 4.6b show the retrieval performance for the BoW retrieval system on

the CalTech Buildings, and the UK Benchmark datasets respectively. We performed better

across the board on the UK Benchmark dataset. The UK Dataset is very controlled, and

there is very little in each image besides the object of focus. We believe this is why we

consistently perform better on it.

0 10 20 30 40 50
Number of Top Images Considered (@k)

50

55

60

65

70

75

Ac
cu

ra
cy

Retrieval Performance BoW/CalTech Buildings

@500K
@1M
@2M

(a) CalTech Buildings

10 20 30 40 50
Number of Top Images Considered (@k)

55

60

65

70

75

Ac
cu
ra
cy

Retrieval Performance BoW/UKBenchmark

@500K
@1M
@2M

(b) UK Benchmark

Figure 4.6: Retrieval Performance for BoW System on Caltech Buildings and UK

Benchmark Datasets at Multiple Precision Levels

Figures 4.7a and 4.7b show the retrieval performance for the FR retrieval system on

the CalTech Buildings, and the UK Benchmark datasets respectively. We can see here

that the FR system performs about 10% better than the BoW system across the board on

both datasets. Recall, this improved performance comes at the cost of roughly an order of

magnitude more storage for the FR HKM index, and nearly an order of magnitude increase

in index creation time. While improving or evaluating the performance of the FR and BoW

methods is not our focus, it is important to present the performance, since performance is

the end deliverable of any image retrieval system.

66

0 10 20 30 40 50
Number of Top Images Considered (@k)

65

70

75

80

85

Ac
cu
ra
cy

Retrieval Performance FR/CalTech Buildings

@500K
@1M
@2M

(a) CalTech Buildings

0 10 20 30 40 50
Number of Top Images Considered (@k)

65

70

75

80

85

Ac
cu
ra
cy

Retrieval Performance FR/UK Benchmark

@500K
@1M
@2M

(b) UK Benchmark

Figure 4.7: Retrieval Performance for FR System on Caltech Buildings and UK Benchmark

Datasets at Multiple Precision Levels

67

V. Future Work and Conclusion

With the US military collecting more image data than ever, new techniques need to be

created to glean useful information from this large amount of data. Image retrieval systems

provide a way search through large collections of images for a particular image. BoW

retrieval systems provide fast index creation, and low storage requirements with a sacrifice

in retrieval accuracy. FR systems exhibit slower index creation, larger storage requirements,

with better retrieval accuracy. Both types of systems provide the same service. When

implemented with the big data processing power of MapReduce, we provide a way to

extract the information contained in large amounts of image data.

While many image retrieval methods exist, as the size of database image collections

increase, many of these methods falter. Traditional methods are plagued by issues of

database storage, retrieval throughput, and index creation time. This research combines

the scalable parallelization and data distribution of MapReduce with the highly researched,

proven techniques of image retrieval in order to build a scalable image retrieval system. The

objective of this thesis research is to build two linearly scalable image retrieval systems. In

order to accomplish these goals, the following steps were taken:

1. Create and implement MapReduce Hierarchical K-Means BoW and FR indexing

algorithms.

2. Develop MapReduce Query Image Comparison algorithms for BoW and FR Indexes.

3. Analyze the scalability of each step in the image retrieval system.

In order to definitively state whether the objective of developing two linearly scalable

image retrieval systems was met, we broke the scaling of the systems into parts:

1. Verify linear scalability of FR HKM and Inverted Files index storage

68

2. Verify linear scalability of FR HKM and Inverted Files index creation

3. Verify linear scalability of FR and BoW retrieval throughput

4. Observe retrieval acuracy

Linear scalability of index storage was demonstrated for both BoW and FR HKM

indexes. The scalability of FR and BoW index creation time were nearly linear. However,

due to a randomness in cluster initialization and other overhead, index creation times for

both systems are slightly worse than linear. Finally, the throughput of both the BoW and FR

retrieval algorithms scaled far better than linear. This is very important since the throughput

drives the amount of time a user would have to wait for a response. While we were not able

to show linear scaling for either of the systems, we are satisfied by the scalability of the

throughput.

5.1 Contributions

The novel contributions in this work include:

1. MapReduce implementation of HKM Inverted Files Index Creation

2. MapReduce implementation of HKM FR Index Creation

3. MapReduce implementation of tf-idf retrieval scheme for BoW image retrieval

4. MapReduce implementation of k-nearest neighbor retrieval scheme for FR image

retrieval

5. Scalability analysis of HKM FR and HKM BoW image retrieval systems

This work has shown the first MapReduce implementations of both FR HKM and

HKM BoW image retrieval systems. These systems have been demonstrated to be linearly

scalable with respect to storage, index creation for BoW, and retrieval throughput. While

69

the BoW method was far superior in terms of index storage and creation times, the FR

system yielded much better accuracy. This suggests that the type of image retrieval system

should be chosen based on the needs of the application.

5.2 Extensions

There are many logical extensions to this research. While Hadoop is an ideal tool to

solve problems dealing with large amounts of data, it is not optimal for iterative algorithms.

Since HKM is an iterative algorithm, this is obvious area for improvement. Apache Mahout

[37] is a software project, built on top of Hadoop, that has implemented scalable machine

learning and clustering algorithms, such as K-Means. Utilizing these optimized algorithms

could improve FR HKM index creation time considerably.

Retrieval accuracy, is also an area for potential improvements. This can only be

improved by re-thinking the traditional image retrieval techniques. While implementing

traditional image retrieval techniques on MapReduce allows for scalability in terms of

index creation, retrieval throughput, and storage, just as in serial image retrieval systems,

as the number of database images increases, the retrieval accuracy decreases. This leads to

a system that is not scalable in terms of accuracy.

As was the case in this research, the scalability of MapReduce programs is typically

limited only by physical resources. The Air Force is moving towards doing most resource

on cloud infrastructures, to avoid costs of maintaining hardware and scaling problems such

as this. Hadoop is very well suited to cloud computing, and extending this research to

a cloud environment to run larger experiments, is also a logical extension. This research

could be extended into practical military applications. If set up in a cloud environment, an

image retrieval system built like this could be used to recognize many different types of

objects from anywhere. A deployed soldier could easily snap a picture of an object with a

cell phone, and submit that image to the cloud environment. Within seconds, that object is

identified and information associated with it can be served.

70

5.3 Conclusion

In conclusion, this research provides two methods for performing large scale image

retrieval. While we were unable to claim linear scalability of the overall system, the on-

line phase scales much better than linearly, and the off-line phase is a one time cost. The

methods presented here do provide a method for processing large amounts of data, however

handling large amounts of data still proves challenging. Now that multiple scalable image

retrieval systems have been demonstrated, image retrieval techniques must be adapted to

provide better accuracy. Finally, in order to compare new image retrieval implementations

and techniques, a cloud-based research environment should be proposed for standardization

of future experiments.

71

Bibliography

[1] David Abrahams. Building hybrid systems with boost.python, March 2003.

[2] S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, and R. Szeliski. Building rome in a
day. In Computer Vision, 2009 IEEE 12th International Conference on, pages 72–79,
2009.

[3] Mohamed Aly, Mario Munich, and Pietro Perona. Bag of words for large scale object
recognition. computational vision lab, Caltech, Pasadena, CA, USA, 2011.

[4] Mohamed Aly, Mario Munich, and Pietro Perona. Distributed kd-trees for retrieval
from very large image collections. In British Machine Vision Conference, Dundee,
Scotland, 2011.

[5] Mohamed Aly, Mario Munich, and Pietro Perona. Indexing in large scale image
collections: Scaling properties and benchmark. In Applications of Computer Vision
(WACV), 2011 IEEE Workshop on, pages 418–425. IEEE, 2011.

[6] Mohamed Aly, Peter Welinder, Mario Munich, and Pietro Perona. Towards automated
large scale discovery of image families. In Computer Vision and Pattern Recognition
Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on,
pages 9–16. IEEE, 2009.

[7] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval,
volume 463. ACM press New York, 1999.

[8] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In Computer Vision–ECCV 2006, pages 404–417. Springer, 2006.

[9] Dhruba Borthakur. The hadoop distributed file system: Architecture and design, 2007.

[10] G. Bradski. Dr. Dobb’s Journal of Software Tools, 2000.

[11] Terry Costlow. Big data poses big challenge for military intelligence, 2012.

[12] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray.
Visual categorization with bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV, volume 1, page 22, 2004.

[13] Anders Lindbjerg Dahl, Henrik Aanæs, and Kim Steenstrup Pedersen. Finding the
best feature detector-descriptor combination. In 3D Imaging, Modeling, Processing,
Visualization and Transmission (3DIMPVT), 2011 International Conference on,
pages 318–325. IEEE, 2011.

72

[14] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[15] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image retrieval: Ideas,
influences, and trends of the new age. ACM Computing Surveys (CSUR), 40(2):5,
2008.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[18] Bo Dong, Jie Qiu, Qinghua Zheng, Xiao Zhong, Jingwei Li, and Ying Li. A
novel approach to improving the efficiency of storing and accessing small files on
hadoop: a case study by powerpoint files. In Services Computing (SCC), 2010 IEEE
International Conference on, pages 65–72. IEEE, 2010.

[19] Friedrich Fraundorfer and Horst Bischof. Evaluation of local detectors on non-planar
scenes. In Proceedings of the Austrian Association for Pattern Recognition Workshop,
pages 125–132, 2004.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
ACM SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM, 2003.

[21] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, page 50. Manchester, UK, 1988.

[22] Amazon Web Services Inc. Amazon elastic map reduce, 2013.

[23] Andrew Edie Johnson. Spin-images: a representation for 3-D surface matching. PhD
thesis, Citeseer, 1997.

[24] Bela Julesz. Textons, the elements of texture perception, and their interactions.
Nature, 1981.

[25] Jimmy Lin and Michael Schatz. Design patterns for efficient graph algorithms in
mapreduce. In Proceedings of the Eighth Workshop on Mining and Learning with
Graphs, pages 78–85. ACM, 2010.

[26] S.P. Lloyd. Least squares quantization in pcm’s. In Bell Telephone Laboratories
Paper. Murray Hill, 1957.

[27] DavidG. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

73

[28] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-baseline
stereo from maximally stable extremal regions. Image and vision computing,
22(10):761–767, 2004.

[29] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point
detectors. International journal of computer vision, 60(1):63–86, 2004.

[30] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local
descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
27(10):1615–1630, 2005.

[31] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri
Matas, Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool. A comparison of
affine region detectors. International journal of computer vision, 65(1-2):43–72,
2005.

[32] Diana Moise, Denis Shestakov, Gylfi Gudmundsson, and Laurent Amsaleg. Indexing
and searching 100m images with map-reduce. In Proceedings of the 3rd ACM
conference on International conference on multimedia retrieval, pages 17–24. ACM,
2013.

[33] Greg Mori, Xiaofeng Ren, Alexei A Efros, and Jitendra Malik. Recovering human
body configurations: Combining segmentation and recognition. In Computer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, volume 2, pages II–326. IEEE, 2004.

[34] Marius Muja and David G Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In VISAPP (1), pages 331–340, 2009.

[35] Henning Müller, David M Squire, Wolfgang Mueller, and Thierry Pun. Efficient
access methods for content-based image retrieval with inverted files. In Photonics
East’99, pages 461–472. International Society for Optics and Photonics, 1999.

[36] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary tree. In
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference
on, volume 2, pages 2161–2168. IEEE, 2006.

[37] Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in action.
Manning, 2011.

[38] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Object retrieval with large vocabularies and fast spatial matching. In Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,
2007.

[39] Jeffrey Shafer, Scott Rixner, and Alan L Cox. The hadoop distributed filesystem:
Balancing portability and performance. In Performance Analysis of Systems &

74

Software (ISPASS), 2010 IEEE International Symposium on, pages 122–133. IEEE,
2010.

[40] Denis Shestakov, Diana Moise, Gylfi Thór Gudmundsson, Laurent Amsaleg, et al.
Scalable high-dimensional indexing with hadoop. In CBMI—International Workshop
on Content-Based Multimedia Indexing, 2013.

[41] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image descriptor
matching. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8. IEEE, 2008.

[42] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to
object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on, pages 1470–1477. IEEE, 2003.

[43] Stephen M Smith and J Michael Brady. Susana new approach to low level image
processing. International journal of computer vision, 23(1):45–78, 1997.

[44] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detectors: a
survey. Foundations and Trends® in Computer Graphics and Vision, 3(3):177–280,
2008.

[45] Tinne Tuytelaars and Luc J Van Gool. Wide baseline stereo matching based on local,
affinely invariant regions. In BMVC, volume 412, 2000.

[46] Brandyn White, Tom Yeh, Jimmy Lin, and Larry Davis. Web-scale computer
vision using mapreduce for multimedia data mining. In Proceedings of the Tenth
International Workshop on Multimedia Data Mining, page 9. ACM, 2010.

[47] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[48] Jun Yang, Yu-Gang Jiang, Alexander G Hauptmann, and Chong-Wah Ngo. Evaluating
bag-of-visual-words representations in scene classification. In Proceedings of the
international workshop on Workshop on multimedia information retrieval, pages 197–
206. ACM, 2007.

75

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Sept 2012–Mar 2014

Large Scale Hierarchical K-Means Based
Image Retrieval With MapReduce

Murphy, William E., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-14-M-56

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Image retrieval remains one of the most heavily researched areas in Computer Vision. Image retrieval methods have been
used in autonomous vehicle localization research, object recognition applications, and commercially in projects such as
Google Glass. Current methods for image retrieval become problematic when implemented on image datasets that can
easily reach billions of images.
In order to process these growing datasets, we distribute the necessary computation for image retrieval among a cluster
of machines using Apache Hadoop. While there are many techniques for image retrieval, we focus on systems that
use Hierarchical K-Means Trees. Successful image retrieval systems based on Hierarchical K-Means Trees have been
built using the tree as a Visual Vocabulary to build an Inverted File Index and implementing a Bag of Words retrieval
approach, or by building the tree as a Full Representation of every image in the database and implementing a K-Nearest
Neighbor voting scheme for retrieval. Both approaches involve different levels of approximation, and each has strengths
and weaknesses that must be weighed in accordance with the needs of the application. Both approaches are implemented
with MapReduce, for the first time, and compared in terms of image retrieval precision, index creation run-time, and
image retrieval throughput. Experiments that include up to 2 million images running on 20 virtual machines are shown.

15. SUBJECT TERMS

Image Retrieval, MapReduce, Hierarchical K-Means, Big Data, Hadoop

U U U UU 87

Dr. Kennard R. Laviers, (AFIT/ENG)

(937) 255-6565 x4395 Kennard.Laviers@afit.edu

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Overview
	Research Goals and Objectives
	Software System Design
	Assumptions
	Risks
	Thesis Outline

	Background and Related Work
	MapReduce and Hadoop
	Image Retrieval
	Previous Large-Scale and MapReduce Image Retrieval Systems

	Design and Implementation
	Test Environment
	Implementation
	Experimental Methodology

	Results and Analysis
	Index Storage Scalability
	Index Creation Time
	Retrieval and Comparison Throughput
	Retrieval Performance

	Future Work and Conclusion
	Contributions
	Extensions
	Conclusion

	Bibliography

